TCEQ Interoffice Memorandum **To:** Tony Walker Director, TCEQ Region 4, Dallas/Fort Worth Alyssa Taylor Air Section Manager, TCEQ Region 4, Dallas/Fort Worth From: Shannon Ethridge, M.S. S.E. Toxicology Division, Chief Engineer's Office **Date:** June 22, 2011 **Subject:** Toxicological Evaluation of Results from an Ambient Air Sample for Volatile Organic Compounds Collected at Latitude 33.38118, Longitude -97.37, Downwind of the Burlington - McMurrey Ranch 22D, 28H, 25H, 35H Site in Sanger, Denton County, Texas Sample Collected on March 18, 2011, ACL 110374 (Lab Sample 110374-001) # **Key Points** - The reported concentrations of three chemicals (2-methylpentane, isopentane, and n-pentane) in Lab Sample 110374-0001 met or exceeded their respective odor air monitoring comparison value (AMCV) (Table 1). The reported levels of these chemicals would be expected to cause odors if exposure were to occur, which is consistent with the TCEQ regional staff report of a strong chemical odor during the sampling event. - The reported concentrations of two chemicals (isopentane and n-pentane) exceeded their respective short-term, health AMCV (Table 1). Preliminary review of the available literature indicates that short-term adverse health effects related to these chemicals usually occur at concentrations much greater than those reported. - At this time, the general public would not be expected to be exposed to emissions from this facility due to the location of the nearest residence (approximately 3,500 feet to the south of the site). However, if land use around the facility changes in the future, exposure may be a possibility. - A citizen residing approximately one mile to the northwest of the site complained of a sulfur odor, sinus headaches, and asthma-like symptoms; however, it is unlikely that emissions from this site are contributing to this citizen's symptoms given the distance from the site to the complainant's home. Tony Walker et al. June 22, 2011 Page 2 of 14 ## **Background** On March 18, 2011, a Texas Commission on Environmental Quality (TCEQ) Region 4 Air Investigator collected a 30-minute canister sample downwind of the Burlington - McMurrey Ranch 22D, 28H, 25H, 35H Site in Sanger, Denton County, Texas (Latitude 33.38118, Longitude -97.37). The sample was collected in response to a citizen complaint of a sulfur odor, sinus headaches, and asthma symptoms. The investigator reported a strong chemical odor during the sampling event. Meteorological conditions measured at the site or nearest stationary ambient air monitoring site indicated that the temperature was 75.1°F, the relative humidity was 56%, and winds were out of the south (180°) at 6.9 miles per hour during the sampling event. The sampling site was between 100 and 300 feet from storage tanks at the site. The nearest residential property was approximately 3,500 feet to the south (up-wind) of the site. The complainant's residence is approximately one mile to the northwest of the site. The sample was sent to the TCEQ laboratory in Austin, Texas, and analyzed for a range of volatile organic compounds (VOCs). The list of the target analytes that were evaluated in this review are provided in Attachment A. The VOC concentrations were reported in parts per billion by volume (ppb_v) (Attachment B and Table 2). Please note that the available canister technology and analysis method can not capture and/or analyze for all chemicals. ### **Results and Evaluation** Due to very high levels of some analytes, the canister sample had to be diluted many times prior to being evaluated in the laboratory. Diluting a sample introduces more uncertainty; therefore, some of the chemical concentrations reported in Attachment B are estimated. Reported VOC concentrations were compared to TCEQ short-term health- and/or welfare-based AMCVs (Table 2). Short-term AMCVs are guidelines used to evaluate ambient concentrations of a chemical in air and to determine its potential to result in adverse health effects, adverse vegetative effects, or odors. Health AMCVs are set to provide a margin of safety and are set well below levels at which adverse health effects are reported to occur in the scientific literature. If a chemical concentration in ambient air is less than its comparison value, no adverse health effects are expected to occur. If a chemical concentration exceeds its comparison value it does not necessarily mean that adverse effects will occur, but rather that further evaluation is warranted. Eighty-one of the 84 VOCs were either not detected or were detected below their respective short-term AMCVs. Exposure to levels of these 81 VOCs would not be expected to cause short-term adverse health effects, adverse vegetative effects, or odors. The reported concentrations of three chemicals (2-methylpentane, isopentane, and n-pentane) exceeded their respective odor air monitoring comparison value (AMCV) (Table 1). The reported levels of these chemicals would be expected to cause odors if exposure were to occur, which is consistent with the TCEQ regional staff report of a strong chemical odor during the sampling event. The reported concentrations of two chemicals (isopentane and n-pentane) exceeded their respective short-term, health AMCV (Table 1). Preliminary review of the available literature indicates that short-term adverse health effects related to these chemicals usually occur at concentrations much greater than those reported. Tony Walker et al. June 22, 2011 Page 3 of 14 At this time, the general public would not be expected to be exposed to emissions from this facility due to the location of the nearest residence (approximately 3500 feet to the south of the site). However, exposure may be a possibility in the future if land use around this facility changes. In addition, it is unlikely that emissions from this site are contributing to the complainant's symptoms since their property is located approximately one mile to the northwest of the site. Please call me at (512) 239-1822 if you have any questions regarding this evaluation. Table 1. Exceedances in Lab Sample 110374-0001 | Chemical | Measured
Concentration
(ppb _v) | Short-term
health AMCV
(ppb _v) | Short-term
odor
AMCV
(ppb _v) | Does it exceed the short-term, health AMCV? | Does it meet
or exceed
the short-
term, odor
AMCV ? | |-----------------|--|--|---|---|---| | 2-methylpentane | 330 ¹ | 1,000 | 83 | No | Yes | | isopentane | 1,300 ² | 1,200 | 1,300 | Yes | Yes | | n-pentane | 1,600 ³ | 1,200 | 1,400 | Yes | Yes | ¹ D3 - Sample concentration was calculated using a dilution factor of 208.52 and the diluted sample was analyzed on 03/31/2011. ² D3 - Sample concentration was calculated using a dilution factor of 208.52 and the diluted sample was analyzed on 03/31/2011. ³ D3 - Sample concentration was calculated using a dilution factor of 208.52 and the diluted sample was analyzed on 03/31/2011. Tony Walker et al. June 22, 2011 Page 4 of 14 ### Attachment A ## **List of Target Analytes for Canister Samples** ethane ethylene acetylene propane propylene dichlorodifluoromethane methyl chloride isobutane vinyl chloride 1-butene 1.3-butadiene n-butane t-2-butene bromomethane c-2-butene 3-methyl-1-butene isopentane trichlorofluoromethane 1-pentene n-pentane isoprene t-2-pentene 1,1-dichloroethylene c-2-pentene methylene chloride 2-methyl-2-butene 2,2-dimethylbutane cyclopentene 4-methyl-1-pentene 1,1-dichloroethane cyclopentane 2,3-dimethylbutane 2-methylpentane 3-methylpentane 2-methyl-1-pentene + 1-hexene n-hexane chloroform t-2-hexene c-2-hexene 1,2-dichloroethane methylcyclopentane 2,4-dimethylpentane 1,1,1-trichloroethane benzene carbon tetrachloride cyclohexane 2-methylhexane 2,3-dimethylpentane 3-methylhexane 1,2-dichloropropane trichloroethylene 2,2,4-trimethylpentane 2-chloropentane n-heptane c-1,3-dichloropropylene methylcyclohexane t-1,3-dichloropropylene 1,1,2-trichloroethane 2,3,4-trimethylpentane toluene 2-methylheptane 3-methylheptane 1,2-dibromoethane n-octane tetrachloroethylene chlorobenzene ethylbenzene m & p-xylene styrene 1,1,2,2-tetrachloroethane o-xylene n-nonane isopropylbenzene n-propylbenzene m-ethyltoluene p-ethyltoluene 1,3,5-trimethylbenzene o-ethyltoluene 1,2,4-trimethylbenzene n-decane 1,2,3-trimethylbenzene m-diethylbenzene p-diethylbenzene n-undecane Tony Walker et al. June 22, 2011 Page 5 of 14 #### Attachment B 4/4/2011 #### Texas Commission on Environmental Quality Laboratory and Quality Assurance Section P.O. Box 13087, MC-165 Austin, Texas 78711-3087 (512) 239-1716 #### Laboratory Analysis Results ACL Number: 110374 ACL Lead: Karen Bachtel Region: T04 Date Received: 3/23/2011 Project(s): Barnett Shale | Facility(ies) Sampled | City | County | Facility Type | |-----------------------|--------|--------|---------------| | Burlington Resources | Sanger | Denton | ' | #### Laboratory Procedure(s) Performed: Analysis: AMOR006 Determination of VOC Canisters by GC/MS Using Modified Method TO-15 Procedure Prior to analysis, subatmospheric samples are pressurized to twice the collected volume using a sample dilution system. For analysis, a known volume of a sample is directed from the canister into a multitrap cryogenic concentrator. Internal standards are added to the sample stream prior to the trap. The concentrated sample is thermally desorbed and carried onto a GC column for separation. The analytical strategy involves using a GC with dual columns that are coupled to a mass selective detector (MSD) and a flame ionization detector (FID). Mass spectra for individual peaks in the total ion chromatogram are then used for target compound identification and quantitation. The fragmentation pattern is compared with stored spectra taken under similar conditions in order to identify the compound. For any given compound, the intensity of the quantitation fragment is compared with the system response to the fragment for known amounts of the compound. This establishes the compound concentration in the sample. For non-target compound peaks which are at least one-half the height of the internal standard, a library search is performed in an attempt to identify the compound solely upon fracture patterns. These tentatively identified compounds (TIC's) are reported as a sample specific footnote. Accurate quantitation of TICs is not possible. The FID is used for the quantitation of ethane, ethylene, acetylene, propylene and propane and identification is based on matching retention times of standards containing known analytes. Sample(s) Received Field ID Number: 01222 Laboratory Sample Number: 110374-0001 Sampled by: Daniel Atambo Sampling Site: McMurrey Ranch Unit A&B Date & Time Sampled: 03/18/11 11:42:00 Valid Sample: Yes Comments: Canister 01222 was used to collect a 30-minute sample using OFC-066. Please note that this analytical technique is not capable of measuring all compounds which might have adverse health effects. For questions on the analytical procedures please contact the laboratory manager at (512) 239-4894. For an update on the health effects evaluation of these data, please contact the Toxicology Division at (512) 239-1795. Analys Date 4/5/11 Reviewed By Karen B Date: 4/1/221 Technical Specialist David Manis Date: 9-7-1/ # Laboratory Analysis Results ACL Number: 110374 Analysis Code: AMOR006 | Note: Results are reported in units of parts | per billion by volu | ıme (ppbv) | | | | | | |--|---------------------|---------------|---------|---------|---------------|-----|---------| | Lab 1D | | 110374-0001 | | | | | | | Field ID | | 01222 | | | | | | | Canister ID | | 01222 | | | | | | | Analysis Date | | 0: | 3/24/11 | ' | | | | | Compound | LOD | Concentration | SDL | Flags** | Concentration | SDL | Flags** | | ethane | . 0.50 | 2700 | 1.0 | D2,T | | | | | ethylene . | 0.50 | 0.66 | 1.0 | J,D1,T | | | | | acetylene | 0.50 | 0.29 | 1.0 | J,DI,T | | | | | propane | 0.50 | 4400 | 1.0 | D2,T | | | | | propylene | 0.50 | ND | 1.0 | DI,T | | | | | dichlorodifluoromethane | 0.20 | 0.53 | 0.40 | L,D1 | | | | | methyl chloride | 0.20 | 1.1 | 0.40 | L,D1 | | | | | isobutane | 0.23 | 820 | 0.46 | D2 | | | | | vinyl chloride | 0.17 | ND | 0.34 | D1 | | | | | L-butene | 0.20 | 0.39 | 0.40 | J,D1 | | | | | 1,3-butadiene | 0.27 | ND | 0.54 | D1 | | | | | n-butane | 0.20 | 3000 | 0.40 | D3 | | | | | t-2-butene | 0.18 | ND | 0.36 | DI | | | | | bromomethane | 0.27 | ND | 0.54 | DI | | | | | c-2-butene | 0.27 | ND . | 0.54 | DI | | | | | 3-methyl-1-butene | 0.23 | ND | 0.46 | DI : | | | | | isopentane | 0.27 | 1300 | 0.54 | D3 | | | | | trichlorofluoromethane | 0.29 | 0.23 | 0.58 | J,D1 | | | | | 1-pentene | 0.27 | ND | . 0.54 | . D1 | , | | | | n-pentane | 0.27 | 1600 | 0.54 | D3 | | | | | isoprene | 0.27 | 0.24 | 0.54 | J,DI | | | | | t-2-peniene | 0.27 | 0.24 | 0.54 | J,D1 | | | | | 1,1-dichloroethylene | 0.18 | 0.03 | 0.36 | J,D1 | | | | | c-2-pentene | 0.25 | 0.05 . | 0.50 | J,D1 | | | | | methylene chloride | 0.14 | 0.07 | 0.28 | J,D1 | | | | | 2-methyl-2-butene | 0.23 | 0.13 | 0.46 | J,D1 | | | | | 2,2-dimethylbutane | 0.21 | 13 | 0.42 | DI | | | | | cyclopentene | 0.20 | ND | 0.40 | DI | | | | | 4-methyl-1-pentene | 0.22 | ND | 0.44 | DI | | | | | 1,1-dichloroethane | 0.19 | ND | 0.38 | DI | | | | | cyclopentane | 0.27 | 18 | 0.54 | D2 | | | | | 2,3-dimethylbutane | 0.28 | 35 | 0.56 | D2 | | | | | 2-methylpentane | 0.27 | 330 | 0.54 | D3 | | | | | 3-methylpentane | 0.23 | 230 | 0.46 | D2 | | | | | 2-methyl-1-pentene + 1-hexene | 0.20 | ND | 0.40 | DI | | | | | n-hexané | 0.20 | 510 | 0.40 | D3 - | | | | | chioroform | 0.21 | ND | 0.42 | D1 | | | | | t-2-hexene | 0.27 | 0.16 | 0.54 | J,D1 | | T | | | c-2-hexene | 0.27 | ND | 0.54 | DI | | | | | 1,2-dichloroethane | 0.27 | ND | .0.54 | DI | | | | | methylcyclopentane | 0.27 | 210 | 0.54 | D2 | | | | | 2,4-dimethylpentane | 0.27 | 15 | 0.54 | DI | | | | | I,I,I-trichloroethane | 0.26 | ND | 0.52 | Di | | | | | benzene | 0.27 | 72 | 0.54 | D2 | | | | | carbon tetrachloride | 0.27 | 0.07 | 0.54 | J,DI | | | | | cyclohexane | 0.24 | 170 | 0.48 | D2 | | | | | 2-methylhexane | 0.27 | 82 | 0.54 | D2 | | | | | 2,3-dimethylpentane | 0.26 | 22 | 0.52 | D2 | | | | ## Laboratory Analysis Results ACL Number: 110374 Analysis Code: AMOR006 | Lab ID | | 110 | 110374-0001 | | | | | |---------------------------|--------|------|-------------|---------|---------------|-----|---------| | Compound LOD | | | | Fings** | Concentration | SDL | Flags** | | 3-methylhexane | 0,20 | 92 | 0.40 | D2 | | 9 | | | 1,2-dichloropropane | 0.17 | ND · | 0.34 | DI | | | | | trichloroethylene | 0.29 | ND | 0.58 | DI | | | | | 2,2,4-trimethylpentane | 0.24 | ND | 0.48 | DI | | | | | 2-chloropentane | 0.27 | ND | 0.54 | DI | | | | | n-heptane | 0.25 | 170 | 0.50 | D2 | | | | | c-1,3-dichloropropylene | 0.20 | ND | 0.40 | D1 | | | | | methylcyclohexane | 0.26 | 150 | 0.52 | D2 | | | | | 1-1,3-dichloropropylene | 0.20 | ND | 0.40 | D1 | | | | | 1,1,2-trichloroethane | 0.21 | ND | 0.42 | DI | | | | | 2,3,4-trimethylpentane | 0.24 | 0.42 | 0.48 | J,D1 | | | | | toluene | 0.27 | 65 | 0.54 | D2 | | | | | 2-methylheptane | 0.20 | 26 | 0.40 | D2 | | | | | 3-methylheptane | 0.23 | 16 | 0.46 | D2 | | | - | | 1,2-dibromoethane | 0.20 | ND | 0.40 | Dl | | | | | 1-octane | 0.19 | 45 | 0.38 | D2 | | | | | etrachloroethylene | 0.24 | ND | 0.48 | DI | | | | | chlorobenzene . | 0.27 | ND: | 0.54 | DI | | | | | ethylbenzene | 0.27 | 3.3 | 0.54 | DI | | | | | m & p-xylene | 0.27 | 20 | 0.54 | DI | | | | | styrene | 0.27 | ND · | .0.54 | D1 | | | | | 1,1,2,2-tetrachloroethane | 0.20 | ND | 0.40 | D1 | | | | | o-xylene · | 0.27 | 4.8 | 0.54 | D1 | | | | | 1-nonane | 0.22 | 11 | 0.44 | D1 | | | | | sopropylbenzene | 0.24 | 0.21 | 0.48 | J,D1 | | | | | n-propylbenzene | 0.27 | 0.42 | 0.54 | J,D1 | | | | | m-ethyltoluene | - 0.11 | 0.88 | 0.22 | L,D1 | , | | | | o-ethyltoluene | 0.16 | 0.32 | 0.32 | L,D1 | | | | | 1,3,5-trimethylbenzene | 0.25 | 0.51 | 0.50 | L,DI | | | | | o-ethyltoluene | 0.13 | 0.24 | 0.26 | 1,01 | | | | | ,2,4-trimethylbenzene | 0.27 | 1.6 | 0.54 | DI | | | | | n-decane · | 0.27 | 2.3 | 0.54 | DI | | | | | ,2,3-trimethylbenzene | . 0.27 | 0.45 | 0.54 | J,D1 | | | | | m-diethylbenzene | 0.27 | ND | 0.54 | DI | | | | | o-diethylbenzene | 0.27 | 0.10 | 0.54 | J,D1 | | | | | -undecane | 0.27 | 0.58 | 0.54 | L,D1 | | | | ## Laboratory Analysis Results ACL Number: 110374 Analysis Code: AMOR006 Note: Results are reported in units of parts per billion by volume (ppbv) LOD - Limit of Detection. ND - not detected NQ - concentration can not be quantified. SDL - Sample Detection Limit (LOD adjusted for dilutions). INV - Invalid. J - Reported concentration is below SDL. L - Reported concentration is at or above the SDL and is below the lower limit of quantitation. E - Reported concentration exceeds the upper limit of instrument calibration. M - Result modified from previous result. T- Data was not confirmed by a confirmational analysis. Data is tentatively identified. * SDL is equal to LOD ** Quality control flags explanations are listed on the last page of this report. TCEQ laboratory customer support may be reached at kbachtel@tceq.state.tx.us The TCEQ is an equal opportunity/affirmative action employer. The agency does not allow discrimination on the basis of race, color, religion, national origin, sex, disability, age, sexual orientation or veteran status. In compliance with the Americans With Disabilities Act, this document may be requested in alternate formats by contacting the TCEQ at (512) 239-0010, (Fax 512-239 -0055), or 1-800-RELAY-TX (TDD), or by writing P.O. Box 13087, Austin, Texas 78711-3087. Tony Walker et al. June 22, 2011 Page 9 of 14 Table 2. Comparison of Monitored Concentrations in Lab Sample 110374-0001 to TCEQ Short-Term AMCVs | Lab Sample ID | 110374-0001 | | | | | | |-----------------------------------|----------------------------------|---|----------------------------|------------------------------------|-------|----------------------------| | Compound | Odor AMCV
(ppb _v) | Short-Term Health
AMCV (ppb _v) | LOD
(ppb _v) | Concentrations (ppb _v) | Flags | SDL
(ppb _v) | | 1,1,1-Trichloroethane | 380,000 | 1,700 | 0.26 | ND | D1 | 0.52 | | 1,1,2,2-Tetrachloroethane | 7,300 | 10 | 0.2 | ND | D1 | 0.4 | | 1,1,2-Trichloroethane | Not Available | 100 | 0.21 | ND | D1 | 0.42 | | 1,1-Dichloroethane | 110,000 | 1,000 | 0.19 | ND | D1 | 0.38 | | 1,1-Dichloroethylene | Not Available | 180 | 0.18 | 0.03 | J,D1 | 0.36 | | 1,2,3-Trimethylbenzene | Not Available | 250 | 0.27 | 0.45 | J,D1 | 0.54 | | 1,2,4-Trimethylbenzene | Not Available | 250 | 0.27 | 1.6 | D1 | 0.54 | | 1,2-Dibromoethane | 10,000 | 0.5 | 0.2 | ND | D1 | 0.4 | | 1,2-Dichloroethane | 6,000 | 40 | 0.27 | ND | D1 | 0.54 | | 1,2-Dichloropropane | 250 | 100 | 0.17 | ND | D1 | 0.34 | | 1,3,5-Trimethylbenzene | Not Available | 250 | 0.25 | 0.51 | L,D1 | 0.5 | | 1,3-Butadiene | 230 | 1,700 | 0.27 | ND | D1 | 0.54 | | 1-Butene | 360 | 50,000 | 0.2 | 0.39 | J,D1 | 0.4 | | 1-Pentene | 100 | 2,600 | 0.27 | ND | D1 | 0.54 | | 2,2,4-Trimethylpentane | Not Available | 750 | 0.24 | ND | D1 | 0.48 | | 2,2-Dimethylbutane (Neohexane) | Not Available | 1,000 | 0.21 | 13 | D1 | 0.42 | | 2,3,4-Trimethylpentane | Not Available | 750 | 0.24 | 0.42 | J,D1 | 0.48 | | 2,3-Dimethylbutane | Not Available | 990 | 0.28 | 35 | D2 | 0.56 | | 2,3-Dimethylpentane | Not Available | 850 | 0.26 | 22 | D2 | 0.52 | | 2,4-Dimethylpentane | 290,000 | 850 | 0.27 | 15 | D1 | 0.54 | | 2-Chloropentane (as chloroethane) | Not Available | 190 | 0.27 | ND | D1 | 0.54 | | 2-Methyl-1-Pentene +1-Hexene | 20 | 500 | 0.2 | ND | D1 | 0.4 | | 2-Methyl-2-Butene | 250 | 500 | 0.23 | 0.13 | J,D1 | 0.46 | | 2-Methylheptane | Not Available | 750 | 0.2 | 26 | D2 | 0.4 | Tony Walker et al. June 22, 2011 Page 10 of 14 | Lab Sample ID | 110374-0001 | | | | | | |---------------------------------|----------------------------------|--|----------------------------|------------------------------------|--------|----------------------------| | Compound | Odor AMCV
(ppb _v) | Short-Term Health AMCV (ppb _v) | LOD
(ppb _v) | Concentrations (ppb _v) | Flags | SDL
(ppb _v) | | 2-Methylhexane | Not Available | 750 | 0.27 | 82 | D2 | 0.54 | | 2-Methylpentane (Isohexane) | 83 | 1,000 | 0.27 | 330 | D3 | 0.54 | | 3-Methyl-1-Butene | 250 | 8,000 | 0.23 | ND | D1 | 0.46 | | 3-Methylheptane | Not Available | 750 | 0.23 | 16 | D2 | 0.46 | | 3-Methylhexane | Not Available | 750 | 0.2 | 92 | D2 | 0.4 | | 3-Methylpentane | Not Available | 1,000 | 0.23 | 230 | D2 | 0.46 | | 4-Methyl-1-Pentene (as hexene) | 20 | 500 | 0.22 | ND | D1 | 0.44 | | Acetylene | 620000 | 25,000 | 0.5 | 0.29 | J,D1,T | 1 | | Benzene | 2700 | 180 | 0.27 | 72 | D2 | 0.54 | | Bromomethane (methyl bromide) | 21000 | 30 | 0.27 | ND | D1 | 0.54 | | c-1,3-Dichloropropylene | Not Available | 10 | 0.2 | ND | D1 | 0.4 | | c-2-Butene | 2100 | 15,000 | 0.27 | ND | D1 | 0.54 | | c-2-Hexene | Not Available | 500 | 0.27 | ND | D1 | 0.54 | | c-2-Pentene | Not Available | 2,600 | 0.25 | 0.05 | J,D1 | 0.5 | | Carbon Tetrachloride | 97000 | 20 | 0.27 | 0.07 | J,D1 | 0.54 | | Chlorobenzene (phenyl chloride) | 210 | 100 | 0.27 | ND | D1 | 0.54 | | Chloroform (trichloromethane) | 85,000 | 20 | 0.21 | ND | D1 | 0.42 | | Cyclohexane | 420 | 1,000 | 0.24 | 170 | D2 | 0.48 | | Cyclopentane | Not Available | 1,200 | 0.27 | 81 | D2 | 0.54 | | Cyclopentene | Not Available | 2,900 | 0.2 | ND | D1 | 0.4 | | Dichlorodifluoromethane | Not Available | 10,000 | 0.2 | 0.53 | L,D1 | 0.4 | | Ethane | 180,000 | Simple Asphyxiant* | 0.5 | 2700 | D2,T | 1 | | Ethylbenzene | 170 | 20,000 | 0.27 | 3.3 | D1 | 0.54 | | Ethylene | 270,000 | 500,000 | 0.5 | 0.66 | J,D1,T | 1 | | Isobutane | 2,040 | 8,000 | 0.23 | 820 | D2 | 0.46 | Tony Walker et al. June 22, 2011 Page 11 of 14 | Lab Sample ID | 110374-0001 | | | | | | |--------------------------------------|----------------------------------|--|----------------------------|------------------------------------|-------|----------------------------| | Compound | Odor AMCV
(ppb _v) | Short-Term Health AMCV (ppb _v) | LOD
(ppb _v) | Concentrations (ppb _v) | Flags | SDL
(ppb _v) | | Isopentane (2-methylbutane) | 1,300 | 1,200 | 0.27 | 1300 | D3 | 0.54 | | Isoprene | 5 | 20 | 0.27 | 0.24 | J,D1 | 0.54 | | Isopropylbenzene (cumene) | 100 | 500 | 0.24 | 0.21 | J,D1 | 0.48 | | m & p-Xylene (as mixed isomers) | 80 | 1,700 | 0.27 | 20 | D1 | 0.54 | | m-Diethylbenzene | 70 | 460 | 0.27 | ND | D1 | 0.54 | | Methyl Chloride (chloromethane) | Not Available | 500 | 0.2 | 1.1 | L,D1 | 0.4 | | Methylcyclohexane | 150 | 4,000 | 0.26 | 150 | D2 | 0.52 | | Methylcyclopentane | 1,700 | 750 | 0.27 | 210 | D2 | 0.54 | | Methylene Chloride (dichloromethane) | 160,000 | 3,500 | 0.14 | 0.07 | J,D1 | 0.28 | | m-Ethyltoluene | 18 | 250 | 0.11 | 0.88 | L,D1 | 0.22 | | n-Butane | 1,200,000 | 8,000 | 0.2 | 3000 | D3 | 0.4 | | n-Decane | 620 | 1,750 | 0.27 | 2.3 | D1 | 0.54 | | n-Heptane | 670 | 850 | 0.25 | 170 | D2 | 0.5 | | n-Hexane | 1,500 | 1,800 | 0.2 | 510 | D3 | 0.4 | | n-Nonane | 2,200 | 2,000 | 0.22 | 11 | D1 | 0.44 | | n-Octane | 1,700 | 750 | 0.19 | 45 | D2 | 0.38 | | n-Pentane | 1,400 | 1,200 | 0.27 | 1600 | D3 | 0.54 | | n-Propylbenzene | 3.8 | 250 | 0.27 | 0.42 | J,D1 | 0.54 | | n-Undecane | Not Available | 550 | 0.27 | 0.58 | L,D1 | 0.54 | | o-Ethyltoluene | Not Available | 250 | 0.13 | 0.24 | J,D1 | 0.26 | | o-Xylene | 380 | 1,700 | 0.27 | 4.8 | D1 | 0.54 | | p-Diethylbenzene | 0.39 | 460 | 0.27 | 0.1 | J,D1 | 0.54 | | p-Ethyltoluene | 8.3 | 250 | 0.16 | 0.32 | L,D1 | 0.32 | | Propane | 1,500,000 | Simple Asphyxiant* | 0.5 | 4400 | D2,T | 1 | | Propylene | 13,000 | Simple Asphyxiant* | 0.5 | ND | D1,T | 1 | Tony Walker et al. June 22, 2011 Page 12 of 14 | Lab Sample ID | 110374-0001 | | | | | | | |-------------------------|----------------------------------|---|----------------------------|------------------------------------|-------|----------------------------|--| | Compound | Odor AMCV
(ppb _v) | Short-Term Health
AMCV (ppb _v) | LOD
(ppb _v) | Concentrations (ppb _v) | Flags | SDL
(ppb _v) | | | Styrene | 25 | 5,100 | 0.27 | ND | D1 | 0.54 | | | t-1,3-Dichloropropylene | Not Available | 10 | 0.2 | ND | D1 | 0.4 | | | t-2-Butene | 2,100 | 15,000 | 0.18 | ND | D1 | 0.36 | | | t-2-Hexene | Not Available | 500 | 0.27 | 0.16 | J,D1 | 0.54 | | | t-2-Pentene | Not Available | 2,600 | 0.27 | 0.24 | J,D1 | 0.54 | | | Tetrachloroethylene | 770 | 1,000 | 0.24 | ND | D1 | 0.48 | | | Toluene | 170 | 4,000 | 0.27 | 65 | D2 | 0.54 | | | Trichloroethylene | 3,900 | 100 | 0.29 | ND | D1 | 0.58 | | | Trichlorofluoromethane | 5,000 | 10,000 | 0.29 | 0.23 | J,D1 | 0.58 | | | Vinyl Chloride | Not Available | 26,000 | 0.17 | ND | D1 | 0.34 | | ^{*}A simple asphyxiant displaces air, lowering the partial pressure of oxygen and causing hypoxia at sufficiently high concentrations. ppb_v - Parts per billion by volume. ND - Not detected. NQ - Concentration can not be quantified. LOD - Limit of detection. SDL - Sample Detection Limit (LOD adjusted for dilutions). INV - Invalid. - J Reported concentration is below SDL. - L Reported concentration is at or above the SDL and is below the lower limit of quantitation. - E Reported concentration exceeds the upper limit of instrument calibration. - M Result modified from previous result. - T Data was not confirmed by a confirmational analysis. Data is tentatively identified. - D1 Sample concentration was calculated using a dilution factor of 4.02. - D2 Sample concentration was calculated using a dilution factor of 52.13 and the diluted sample was analyzed on 3/29/2011. - D3 Sample concentration was calculated using a dilution factor of 208.52 and the diluted sample was analyzed on 3/31/2011. Tony Walker et al. June 22, 2011 Page 13 of 14 **Table 3. TCEQ Long-Term Air Monitoring Comparison Values (AMCVs)** Please Note: The long-term AMCVs are provided for informational purposes only because it is scientifically inappropriate to compare short-term monitored values to the long-term AMCV. | Compound | Long-Term Health
AMCV (ppb _v) | Compound | Long-Term Health
AMCV (ppb _v) | |-----------------------------------|--|--------------------------------------|--| | 1,1,1-Trichloroethane | 940 | Cyclopentane | 120 | | 1,1,2,2-Tetrachloroethane | 1 | Cyclopentene | 290 | | 1,1,2-Trichloroethane | 10 | Dichlorodifluoromethane | 1,000 | | 1,1-Dichloroethane | 100 | Ethane | Simple Asphyxiant* | | 1,1-Dichloroethylene | 86 | Ethylbenzene | 450 | | 1,2,3-Trimethylbenzene | 25 | Ethylene** | 5,300 | | 1,2,4-Trimethylbenzene | 25 | Isobutane | 800 | | 1,2-Dibromoethane | 0.05 | Isopentane (2-methylbutane) | 120 | | 1,2-Dichloroethane | 1 | Isoprene | 2 | | 1,2-Dichloropropane | 10 | Isopropylbenzene (cumene) | 50 | | 1,3,5-Trimethylbenzene | 25 | m & p-Xylene (as mixed isomers) | 140 | | 1,3-Butadiene | 9.1 | m-Diethylbenzene | 46 | | 1-Butene | Not Available | Methyl Chloride (chloromethane) | 50 | | 1-Pentene | Not Available | Methylcyclohexane | 400 | | 2,2,4-Trimethylpentane | 75 | Methylcyclopentane | 75 | | 2,2-Dimethylbutane (Neohexane) | 100 | Methylene Chloride (dichloromethane) | 100 | | 2,3,4-Trimethylpentane | 75 | m-Ethyltoluene | 25 | | 2,3-Dimethylbutane | 99 | n-Butane | 800 | | 2,3-Dimethylpentane | 85 | n-Decane | 175 | | 2,4-Dimethylpentane | 85 | n-Heptane | 85 | | 2-Chloropentane (as chloroethane) | 19 | n-Hexane | 190 | | 2-Methyl-1-Pentene +1-Hexene | 50 | n-Nonane | 200 | | Compound | Long-Term Health AMCV (ppb _v) | Compound | Long-Term Health
AMCV (ppb _v) | |---------------------------------|---|-------------------------|--| | 2-Methyl-2-Butene | 50 | n-Octane | 75 | | 2-Methylheptane | 75 | n-Pentane | 120 | | 2-Methylhexane | 75 | n-Propylbenzene | 25 | | 2-Methylpentane (Isohexane) | 100 | n-Undecane | 55 | | 3-Methyl-1-Butene | 800 | o-Ethyltoluene | 25 | | 3-Methylheptane | 75 | o-Xylene | 140 | | 3-Methylhexane | 75 | p-Diethylbenzene | 46 | | 3-Methylpentane | 100 | p-Ethyltoluene | 25 | | 4-Methyl-1-Pentene (as hexene) | 50 | Propane | Simple Asphyxiant* | | Acetylene | 2,500 | Propylene | Simple Asphyxiant* | | Benzene | 1.4 | Styrene | 110 | | Bromomethane (methyl bromide) | 3 | t-1,3-Dichloropropylene | 1 | | c-1,3-Dichloropropylene | 1 | t-2-Butene | Not Available | | c-2-Butene | Not Available | t-2-Hexene | 50 | | c-2-Hexene | 50 | t-2-Pentene | Not Available | | c-2-Pentene | Not Available | Tetrachloroethylene*** | 3.8 | | Carbon Tetrachloride | 2 | Toluene | 1,100 | | Chlorobenzene (phenyl chloride) | 10 | Trichloroethylene | 10 | | Chloroform (trichloromethane) | 2 | Trichlorofluoromethane | 1,000 | | Cyclohexane | 100 | Vinyl Chloride | 0.45 | ^{*}A simple asphyxiant displaces air, lowering the partial pressure of oxygen and causing hypoxia at sufficiently high concentrations. ^{**}Long-term vegetation AMCV for Ethylene is 30 ppb. ^{***}Long-term vegetation AMCV for Tetrachloroethylene is 12 ppb.